分类

2025年05月05日成考高起点每日一练《数学(文史)》

成考高起点 2025-05-05作者:匿名 来源:本站整理

2025年成考高起点每日一练《数学(文史)》5月5日专为备考2025年数学(文史)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

单选题

1、函数的最小正周期和最大值分别为

答 案:B

解 析: 【考点指要】本题考查的是三角函数y=Asin(ωx+φ)+B的周期性和最值问题,需要注意的是正弦函数y=sinx和余弦函数y=cosx的最小正周期为2π,正切函数y=tanx的最小正周期为x.

2、与圆x2+y2=4关于点M(3,2)成中心对称的曲线方程是( )  

答 案:C

解 析:与圆关于点M成中心对称的曲线还是圆.只要求出圆心和半径,即可求出圆的方程.圆x2+y2=4的圆心(0,0)关于点M(3,2)成中心对称的点为(6,4),所以所求圆的圆心为(6,4),半径与对称圆的半径相等,所以所求圆的方程为(x-6)2+(y-4)2=4. 【考点指要】本题主要考查中心对称图形的定义、中点坐标公式的灵活运用、圆的标准方程的求法,这些主要概念在考试大纲中要求掌握,同时也是近几年经常考到的知识点.

3、直线l1与直线l2:3x+2y-12=0的交点在x轴上,并且l1⊥l2,则l1在y轴上的截距是()。

答 案:B

解 析:由于直线l2:3x+2y-12=0与x轴的交点为(4,0),斜率为故直线l1的斜率为,且经过(4,0),故l1的方程为y-0=令x=0求得,即l1在y轴上的截距是故选C。 用点斜式求得直线l1的方程,再根据直线在y轴上的截距的定义求得l1在y轴上的截距,本题主要考查用点斜式求直线的方程,直线在y轴上的截距的定义和求法,属于基础题

4、设集合A={x|x2-2x-32},则A∩B=( )

答 案:A

主观题

1、已知F是椭圆的右焦点,点M在抛物线y2=2px(p>0)上O为坐标原点,且△MOF为正三角形.  (Ⅰ)求P的值; (Ⅱ)求抛物线的焦点坐标和准线方程.

答 案:(Ⅰ)由椭圆方程可知,椭圆的长半轴a=5,短半轴,则椭圆的半焦距 即椭圆的右焦点F的坐标为 (4.0). 如图,因为△MOF为正三角形,OF=4,过M作MN⊥OF于N点, 【考点指要】本题主要考查椭圆、抛物线的概念,要求考生掌握它们的标准方程和性质,会用它们解决有关的问题.  

2、已知lg2=a,lg3=b,求lg0.15关于a,b的表达式。  

答 案:

3、求证:双曲线的一个焦点到一条渐近线的距离等于虚半轴的长.  

答 案:设双曲线的方程为 则它的焦点坐标为F1(-c,0),F2(c,0),其中c2=a2+b2,渐近线方程为 令设焦点F2(c,0)到渐近线 的距离为d,则 即从双曲线的一个焦点F2(c,0)到一条渐近线的距离等于虚半 轴的长b,由上述推导过程可知,点F2到渐近线以及点F1(-c,0)到渐近线 的距离都等。 由于证明中只涉及a,b,c,而与双曲线的位置无关,所以这个结论对于任意双曲线都成立.

解 析:本题考查的是圆锥曲线与直线位置关系的推理能力,主要是用代数的方法表示几何中的问题.考生必须对曲线方程、几何性质及元素之间的关系有深刻的理解,方可解决此类综合题.这种综合性的圆锥曲线试题出现的概率比较高,要引起重视.

4、若tanα、tanβ是关于x的方程mx2-(2m-3)x+m-2=0的两个实根,求tan(α+β)的取值范围

答 案: 由(1)(2)得,tan(a+β)=m-3/2;由(3)得m≤9/4且m≠0所以tan(a+β)的取值范围是(-∞,-3/2)U(-3/2,3/4)  

填空题

1、5个同学站成一排,其中某个人恰好站在排头的概率是______。  

答 案:

解 析:基本事件的总数n=5!,其中某人恰好站在排头的排法有m=4!种,所求概率为。  

2、“a=0,且b=0”是“a2+b2=0的”______。  

答 案:充要条件

相关文章

网友评论
我要跟贴
    取消