分类

2025年05月04日成考高起点每日一练《数学(文史)》

成考高起点 2025-05-04作者:匿名 来源:本站整理

2025年成考高起点每日一练《数学(文史)》5月4日专为备考2025年数学(文史)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

单选题

1、已知成等差数列,且为方程的两个根,则的值为()  

答 案:D

解 析:由根与系数的关系得由等差数列的性质得

2、已知函数f(x)=5x+b,若f(-2)=3,则b=()。

答 案:D

3、下列各式的值为零的是()。

答 案:D

解 析:00和log11均没有意义,可排除(A)、(B),而(2-)0=1。故选D。

4、若A(-3,5),B(-5,-3),则线段AB中点的坐标为()。  

答 案:B

主观题

1、在△ABC中,B=120°,C=30°,BC=4,求△ABC的面积.

答 案:因为A= 180°-B-C=30°,所以AB = BC=4.因此△ABC的面积

2、如图9-4,已知测速站P到公路L的距离为40米,一辆汽车在公路L上行驶,测得此车从A点行驶到8点所用的时间为2秒,并测得∠APO=60°,∠BPO=30°,计算此车从A到B的平均速度为多少km/h(结果保留到个位),并判断此车是否超过了80km/h的限制速度。

答 案:此车从A到B的平均速度为83(km/h),已经超过80km/h的限制速度。

3、已知F是椭圆的右焦点,点M在抛物线y2=2px(p>0)上O为坐标原点,且△MOF为正三角形.  (Ⅰ)求P的值; (Ⅱ)求抛物线的焦点坐标和准线方程.

答 案:(Ⅰ)由椭圆方程可知,椭圆的长半轴a=5,短半轴,则椭圆的半焦距 即椭圆的右焦点F的坐标为 (4.0). 如图,因为△MOF为正三角形,OF=4,过M作MN⊥OF于N点, 【考点指要】本题主要考查椭圆、抛物线的概念,要求考生掌握它们的标准方程和性质,会用它们解决有关的问题.  

4、在△ABC中,已知AB=2,BC=1,CA= 点D,E,F分别在AB,BC,CA边上,△DEF为正三角形,记∠FEC为α,如果sinα= 求△DEF的边长。

答 案:解析:由AB=2,BC=1,CA= 得BC2=CA2=AB2,因此∠C=90°,如图所示。 因为sinA= 所以∠A=30°,于是∠b=60°。 设正△DEF边长为l,已知AB=2,sinα= 由此EC=lcosα 有图知,∠1+∠2+∠3=180°(三角形内角和); ∠3+∠4+α=180°,因为∠2-∠4=60°,所以∠1=α。 【考点指要】本题主要考查三角函数的概念、同角三角函数的关系及正弦定理,这些均是考试大纲要求掌握的重要概念,并要求能达到灵活应用的程度,此类题是在成人高考中出现频率较高的题型,

填空题

1、某学科的一次练习中,第一小组5个人成绩如下(单位:分):98,89,70,92,90,则分数的样本方差为__________.

答 案:88.96

解 析:平均分 【考点指要】本题主要考查样本的平均数与方差的计算.对于统计问题,只需记清概念和公式,计算时不出错即可.  

2、函数y=2cosx-cos2x(x∈R)的最大值为______。  

答 案:

解 析:

相关文章

网友评论
我要跟贴
    取消