分类

2025年04月28日成考高起点每日一练《数学(理)》

成考高起点 2025-04-28作者:匿名 来源:本站整理

2025年成考高起点每日一练《数学(理)》4月28日专为备考2025年数学(理)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

单选题

1、设A、B、C是三个随机事件,用A、B、C的运算关系()表示事件:B、C都发生,而A不发生  

答 案:B

解 析:选项A,表示A或B发生或C不发生,选项C,表示A不发生或B、C不发生.选项D,表示A发生且 B、C 不发生.

2、以抛物线y2=8x的焦点为圆心,且与此抛物线的准线相切的圆的方程是()。

答 案:C

解 析:抛物线y2=8x的焦点,即圆心为(2,0),抛物线的准线方程是x=-2,与此抛物线的准线相切的圆的半径是r=4,与此抛物线的准线相切的圆的方程是(x-2)2+y2=16。答案为C。

3、在△ABC中,已知a=,b=,c=,则()。

答 案:C

解 析:由已知a=,b=,c=可知a

4、若,且α、β均为锐角,则β的值为()。

答 案:D

解 析:

主观题

1、设分别讨论x→0及x→1时f(x)的极限是否存在?

答 案:∴f(x)在x=0处极限不存在 同理f(x)在x=1处极限存在

2、已知数列{an}中,a1=2, (Ⅰ)求数列{an}的通项公式; (Ⅱ)求数列{an}前5项的和 S5

答 案:解:

3、记△ABC的内角A,B,C的对边分别为a,b,c,已知B=60°,b2=ac,求A。    

答 案:由余弦定理b2=a2+c2-2accosB,可得ac=a2+c2-ac,即a2+c2-2ac=(a-c)2=0,解得a=c。 又因为B=60°,故△ABC为等边三角形,所以A=60°

4、cos20°cos40°cos80°的值。

答 案:

填空题

1、椭圆的中心在原点,一个顶点和一个焦点分别是直线x+3y-6与两坐标轴的交点,则此椭圆的标准方程为()  

答 案:

解 析:原直线方程可化为交点(6,0),(0,2). 当点(6,0)是椭圆一个焦点,点(0,2) 是椭圆一个顶点时,c=6,b=2,当点(0,2) 是椭圆一个焦点,(6,0) 是椭圆一个顶点时,c=2,b-6,

2、点B(4,-5)按向量a平移后的对应点B0(-4,7),则a的坐标是______。  

答 案:(-8,12)

解 析:由平移公式得-4=4+a1,7=-5+a2→a1=-8,a2=12 ∴a的坐标是(-8,12)。  

相关文章

网友评论
我要跟贴
    取消