分类

2023年04月05日成考高起点每日一练《数学(文史)》

成考高起点 2023-04-05作者:匿名 来源:本站整理

2023年成考高起点每日一练《数学(文史)》4月5日专为备考2023年数学(文史)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

单选题

1、直线2x-y+7=0,与圆的位置关系是()  

答 案:C

解 析:易知圆心坐标(1,-1),圆心到直线2x-y+7=0的距离d ∵圆的半径 ∴d=r,∴直线与圆相切  

2、在Rt△ABC中,两个锐角∠A∠B,则  

答 案:A

解 析:在Rt△ABC中,A、B两锐角互余,所以  

3、已知,则sin2α=()

答 案:D

解 析:两边平方得,故

4、已知双曲线上一点到两焦点(-5,0),(5,0)距离之差的绝对值等于6,则双曲线方程为()  

答 案:A

解 析:由已知条件知双曲线焦点在x轴上属于第一类标准式,又知c=5,2a=6, ∴a=3,∴所求双曲线的方程为  

主观题

1、设函数f(x)且f'(-1)=-36 (Ⅰ)求m (Ⅱ)求f(x)的单调区间

答 案:(Ⅰ)由已知得f'= 又由f'(-1)=-36得 6-6m-36=-36 故m=1. (Ⅱ)由(Ⅰ)得f'(x)= 令f'(x)=0,解得 当x<-3时,f'(x)>0; 当-32时,f'(x)>0; 故f(x)的单调递减区间为(-3,2),f(x)的单调递增区间为(-∞,-3),(2,+∞)  

2、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.
(I)求l与C的准线的交点坐标;
(II)求|AB|.

答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由设A(x1,y1).B(x2,y2),则因此

3、已知a,b,c成等差数列,a,b,c+1成等比数列.若b=6,求a和c.

答 案:由已知得解得

4、如图:已知在△ADC中,∠C=90°,∠D=30°,∠ABC=45°,BD=20,求AC(用小数表示,保留一位小数)  

答 案:如图  

填空题

1、函数的图像与坐轴的交点共有()个  

答 案:2

解 析:当x=0,故函数与y轴交于(0,-1)点;令y=0,则有故函数与工轴交于(1,0)点,因此函数与坐标轴的交点共有2个

2、设

答 案:-1

解 析:  

相关文章

网友评论
我要跟贴
    取消